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A lattice model is used to study the properties of an infinite self-avoiding linear 
polymer chain that occupies a fraction 05, 0 ~< 05 ~< 1, of sites on a d-dimensional 
hypercubic lattice. The model introduces an (attractive or repulsive) interaction 
energy e between nonbonded monomers that are nearest neighbors on the 
lattice. The lattice cluster theory enables us to derive a double series expansion 
in e and d 1 for the chain free energy per segment while retaining the full 05 
dependence. Thermodynamic quantities, such as the entropy, energy, and mean 
number of contacts per segment, are evaluated, and their dependences on 05, e, 
and d are discussed. The results are in good accordance with known limiting 
cases. 

KEY WORDS: Self-avoiding walk; self-interacting walk; dense walk; lattice 
model of polymers; polymer packing; connectivity constant. 

1. I N T R O D U C T I O N  

M a n y  interesting theoretical quest ions have been generated by studying the 

properties of macromolecules  in concentra ted solutions, melts, and the 

solid state. A great deal of work in this area has involved the development  
of several polymer models. (1,2) In  particular,  the lattice model of polymers 

has been quite successful in predicting many  the rmodynamic  properties of 
macromolecular  fluids and  glasses. (1'2~ The lattice model  describes a flexible 

polymer as a self-avoiding r a n d o m  walk on a regular lattice of N sites as 
i l lustrated in Fig. 1. The walk is a succession of M -  1 steps ( b o n d s ) j o i n i n g  

M consecutive sites (monomers) .  Excluded-volume constraints  prohibi t  
mult iple occupancy of sites. M is the polymerizat ion index and  is propor-  
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Fig. 1. Typical configuration of a self-interacting SAW filling a fraction 45 = M/N on a 
square lattice of N sites. M is the number  of sites (proportional to the molecular weight) 
occupied by the walk. Nearest neighbor sites that are not consecutive along the chain 
(indicated by dotted lines connecting both sites) interact with a contact energy e. Periodic 
boundary conditions are assumed along all directions. 

tional to the molecular weight. Our interest here lies in the single-chain 
thermodynamic limit of 

N ~ oo, M ~ oo, O <~ 45 = M / N <<, l (1) 

with 45 the polymer packing fraction. A dense (dilute) walk has 45>0 
(45=0). 

A widely used generalization of the self-avoiding lattice model intro- 
duced by Orr (3) incorporates the van der Waals monomer-monomer  inter- 
action as follows: Two nearest neighbor nonbonded monomers interact 
with an energy e. These interactions are represented in Fig. 1 by dotted 
lines. Van der Waals interactions generally produce attractive energies 
(e <0).  As e increases in absolute value, a dilute solution (45 = 0 )  chain 
contracts. When e reaches some critical value eo (the Ftory 0 point) the 
effects of the repulsive (excluded-volume) and attractive interactions cancel 
to a large extent. For  more negative e the chain collapses into a condensed 
state (the collapse transition). Positive e corresponds to enhanced repulsion 
between neighboring nonsequential monomers, and a neighbor-avoiding 
walk (NAW) is obtained in the e-~ oo limit. 

The connectivity constant /~ [/~ = e x p ( - f ) ,  with f the dimensionless 
free energy per segment] is one of the most studied quantities in the vast 
literature on self-avoiding walks (SAWs), although only par t icu lar  l imit ing 
cases have been prev ious ly  considered. In particular, there are many studies 
of athermal (e = 0) chains in the limits of infinite dilution ~*-6) (45 = 0) and 
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at full packing (7 1o) (~  = 1). Also, several researchers have considered the 
dependence of various dilute polymer properties. (H 16) 

The connectivity constant for athermal (e = 0) self-avoiding chains at 
= 0 has been evaluated for various d =  2 and 3 regular lattices using 

directed enumeration techniques together with Pad6 approximants and 
metlaoa. The best values for square and extrapolations based on the ratio " ~ (4) 

s q  sc  simple cubic lattices are #saw=2.6385 and /~saw 4.6835, respectivelyJ 4) 
Some time ago, Fisher and Gaunt  (5) developed a d - 1  expansion of # for 
d-dimensional hypercubic lattices through fifth order in z 1, with z = 2d the 
lattice coordiniation number. The first terms of the series, which was later 
shown to be asymptotic, (6) are (5) 

/ / = z ( 1 - z  1 - z - 2 +  ..-), z = 2 d  (2) 

The properties of dilute self-avoiding polymers (qs=0)  with nearest 
neighbor energies e have been evaluated using direct enumeration and 
Monte Carlo techniques. (11 16) For  instance, Fisher and Hiley (11) computed 
the free energy, internal energy, entropy, and mean number of contacts for 
a single chain as function of e for square and simple cubic lattices. 
Rapaport (12) studied self-interacting SAWs on an fcc lattice and analysed 
the e dependence of # for a wide range of attractive and repulsive e. More 
recently, Ishinabe (13) evaluated #(e) for SAWs on square and tetrahedral 
lattices over a range of energy about e o. These studies ~H-~6) find that # is 
a monotonically decreasing function of e. This is easily understood since 
- l n  #, the free energy per monomer, grows as e increases. 

Dense (qs>0)  walks are used to model concentrated solutions of 
polymers, blends, melts and collapsed macromolecules. (7-~~ Hamittonian 
walks (HW) produce the most compact packing of a single athermal SAW 
on a lattice, as all sites are occupied by monomers ( ~ =  1). The exact 
values of the HW connectivity constants are only known for a few special 
two-dimensional lattices. For  example, Kasteleyn exactly determines the 
number of Hamiltonian walks on a Manhattan lattice, obtaining 
#hw = exp(G/~), where G is the Catalan's constant/y) The best value of #hw 
for an square lattice (#~,q = 1.472) has been obtained by Schmaltz et al. ~8) 
using strip methods. Orland et al/9) apply a field-theoretic representation 
of the packing problem to count the number of SAW configurations which 
fill a hypercubic lattice. Their d-1 expansion of #hw yields 

Uhw = (z/e) + O(z - l )  (3) 

where the first term on the right-hand side is the mean field contribution. 
The one-loop constribution of O(z ~ is found to vanish. Since Eq. (3) for 
d = 2  produces a value surprisingly close to that of Schmaltz et al., (8~ 
Orland eta/ .  (9) raised the possibility that higher corrections to mean field 
from fluctuations might vanish to all orders. 



398 Nemirovsky et  al.  

Dense athermal walks have recently been studied with a variety of 
techniques. Duplantier and Saleur (1~ calculated the connectivity constant # 
as a function of 4,  0 ~< ~ ~< 1, for a single athermal e = 0 chain on a square 
lattice using transfer matrix methods. Their values at q5 = 0 and q~ = 1 are 
very close those of refs. 4 and 8, respectively. Nemirovsky and Coutinho- 
Filho (17) employed field-theoretic techniques to obtain the J-dependent  
connectivity constant of athermal chains as a series in powers of d 1. The 
infinite-dilution limit of the series in ref. 17 agrees with (2), while at full 
packing it reproduces (3). In addition, ref. 17 shows that the next term of 
the series in d =  z/2 for/~hw is nonvanishing, contrary to the expectations 
of ref. 9. Moreover, at d =  2 the results of ref. 17 are in good agreement 
with those of ref. 10 over the whole range 0 ~< 45 ~< 1. 2 

The lattice cluster theory (18'~9) (LCT) has been developed extensively 
by Freed and co-workers to study a variety of thermodynamic properties 
of dense polymer solutions, melts, and blends. This theory also considers 
the Orr model on a d-dimensional hypercubic lattice, and produces l id  
expansions for thermodynamic properties. The LCT begins with an exact 
representation of the chain partition function and then expands it about a 
zeroth-order Flory approximation (which is exact at d =  oo). Previous 
work(18,19) focuses on the many-chain thermodynamic limit of M finite and 

N--.  oo, p --. oo, O < q~= p M / N <~ l (4) 

with p the number of chains. On the other hand, ref. 17 uses the field- 
theoretic form of the LCT to study the limit of (1) for a single dense walk. 
These methods produce an alternative derivation of the z-1 expansion for 
the free energy or other quantities of interest. However, ref. 17 treats only 
athermal chains. 

Here we consider a single flexible self-avoiding polymer of molecular 
weight M and nearest neighbor interaction e such that the chain fills a non- 
zero fraction of a d-dimensional hypercubic lattice. The LCT is generalized 
in Section 2 to describe the thermodynamic limit (1) of a single, dense self- 
interacting SAW. The free energy per segment is evaluated as a double 
series expansion in powers of both e and d -  1 retaining the full dependence 
on the packing fraction 4. Various thermodynamic properties of interacting 
dense walks, such as the internal energy, entropy, and mean number of 
contacts per segment, are calculated as functions of packing fraction, 
contact energy, and dimensionality. Section 3 discusses the results and 
compares them in some limiting cases with previous calculations. This is, 
to our knowledge, the first treatment of self-interacting dense SAWs. 

2 The corrected values of diagrams (e) and (i) in Table I of ref. 17 are 8Mq~2z-2/3 and 
( - - 6 M ~  2 d- 2Mq~3)z -2, respectively. 
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2. LATTICE CLUSTER THEORY FOR AN INTERACTING S A W  

This section briefly outlines the systematic computations of corrections 
to the mean field free energy for a single linear chain which occupies M 
lattice sites on a d-dimensional hypercubic lattice in the thermodynamic 
limit of (1). These corrections reflect the correlations between monomer 
positions that arise from chain connectivity and monomer interactions. 
According to the lattice cluster theory, (17-~9) the single-chain partition 
function can be written as 

Z =  Zmr(1 + corrections) (5) 

where Z mf is the mean field contribution and where entropic and energetic 
corrections are conveniently represented as an expansion in Mayer-like 
diagrams. The entropy diagrams contain various combinations of B 
correlating bonds, while the energy diagrams may have correlating bonds 
in addition to l interaction lines that join interacting monomers. ~ 

The value of an individual diagram is the product of a lattice- 
structure-dependent generalized connectivity factor DB, z and a lattice- 
structure-independent combinatorial factor 7D.i- Each interaction line addi- 
tionally contributes a Mayer function e x p ( - e ) - 1  to Dej .  In contrast to 
the general case of many interacting chains, where B correlating bonds may 
lie on different chains, only one-chain diagrams are allowed for the system 
under consideration. (17) Examples of energy diagrams with one interaction 
line and with B = 1 and B--2  bonds are given in Figs. 2 and 3, where 
crosses and circles are used to distinguish interacting from noninteracting 
monomers, respectively. Straight and curved lines designate correlating 
bonds and interaction lines, respectively. Diagrams bl, b2, and b 3 of Fig. 2 
are one-bond diagrams with, respectively, one disconnected, a singly 
connected, and a doubly connected interaction line. These three main com- 
binations also appear in the remaining first-order energy diagrams of 
Fig. 2. Examples of second-order energy diagrams (with two interaction 
lines) containing up to B-- 1 correlating bonds are provided in Fig. 3. The 

G b t b 2 b 3 c I c 2 

c3 c4 dl d2 d3 d4 

Fig. 2. First-order energy diagrams which contain one curved interaction line. Diagrams are 
given with up to B =  2 correlating bonds (straight lines). 
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first two diagrams of Fig. 3 only have interaction lines that are connected 
sequentially (diagram al) and nonsequentially (diagram a2). Thus, the 
interacting monomers in al and a2 are uncorrelated. There are no diagrams 
in Fig. 3 with two interaction lines between a pair of crossed vertices. Since 
the single-chain entropy diagrams (up to B = 4  correlating bonds) are 
illustrated and evaluated in ref. 17, we focus here on the energy corrections 
to the partition function (5) which have not previously been calculated. 

The evaluation of the connectivity factor Ds, z for energy diagrams 
involves transforming the contributions from all interaction lines into the 
same form as that for correlating bonds. The calculations are performed in 
discrete Fourier space with q the momentum variable. The main difference 
between the treatment of interaction lines and correlating bonds lies in the 
appearance of q = 0  contributions only for the former. However, as is 
proven in ref. 18, all q = 0  contributions may be ignored in all but the 
leading diagram a of Fig. 2, providing diagrams are multiplied by simple 
e-dependent factors. The appropriate counting rules for both 7D, z and Ds, t 
are described in detail in previous papers, (18'19) so they are not discussed 
here. 

The standard procedure of evaluating the Helmholtz free energy 
involves expansion of the logarithm of the right-hand side of (5) in a 
Taylor series. The resulting contributions with a giv, en power of e are then 
collected into cumulants. This process ensures cancellation of unphysical 
individual diagram contributions proportional to higher than the first 
power of M and finally leads to the representation of the free energy 
F =  - in  Z as 

f= F/M= - In  Z/M= --S mr- E (-- 1 ) 5 ( l ' ~  - e/kT 
B,l,i 

(6) 

bt 

b5 

at az 

b2 b3 b4 

b6 b 7 b8 
Fig. 3. Second-order energy diagrams with two interaction lines and up to B = 1 correlating 

bonds. 
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w h e r e  s mf denotes  the specific mean  field en t ropy  of a single SAW and 
6(1, 0) is the Kronecke r  delta function. The  sum over  i in (6) means  a sum 
over  contr ibut ions  f rom all cumulan t  d iagrams C(~) z with B correlat ing 
bonds  and l in teract ion lines for all B and  l. Compu ta t i ona l  details of  C (i) B, 1 

will be presented elsewhere together  with a full list of the cumulant  
d iagrams th rough  B + / = 4  for a rb i t ra ry  chain architectures. (21) Since the 
lattice cluster theory formula t ion  also includes interactions between bonded  
monomers ,  the term - 8  is in t roduced in (6) to el iminate this unwanted  
contr ibut ion.  The  / = 0  cumulant  d iagrams C (i/ reduce to the en t ropy  B,l 

diagrams C}~I) 0 evaluated in ref. 17. D iag rams  Co, t having only interact ion 
lines are called extended mean  field d iagrams to emphasize  the absence of 
bonding- induced correlat ions in these terms. 

After introducing the mean  field en t ropy  s mr 

s mf= l n ( z / e )  - (1 - 45)45 ln(1 - 45) (7) 

and substi tut ing the cumulan t  d i ag ram corrections (up to B + / = 4 ) ,  the 
specific free energy (6) takes the form of a double  series expansion in the 
inverse lattice coordina t ion  number  z -1  and the dimensionless interact ion 
energy e (in units of  k T ) .  The result is writ ten in the t he rmodynamic  limit 
(1) as 

f = f m f _ . } _ f e m f . _ k f ( 1 ) + f ( 2 ~ +  . . .  (8) 

with 

fmf=. - l n  z + 1 + (1 - 45)45-1 ln(1 - 45) (Sa) 

f e m f =  eZ~b/2 --  (e2Z) 45(1 -- 45)2/4 + (83Z) 45(1 -- q~)2 

X (1 - - 2 ~ b ) 2 / 1 2 -  (84Z) 45(1 -- 45)211 --645(1 -- 45) 

X (345 2 -- 345 + 2)] /48 (8b) 

f ( l ~ = z  l(1 -- 45)-- e[1 -- (1 - -  45)2] -- e2(1 -- 45)245 

x (1 -- 745/2 + 345 2) (8c) 

f(2) = z 2[3/2 -- 345 + (10/3)45 2 -- 245 3 ] + (ez-1)(1 -- 4 )  2 

x (1 -- 2~b + 445 2) (8d) 

where superscripts  mf  and  emf indicate the mean  field and extended mean  
field approximat ions ,  and  f ( 1 ) a n d  f ( 2 ) d e n o t e  the corrections to fmf_Ffemf 
of order  z -1 and z 2, respectively. We employ  the formal  ordering of 
8 ~ z 1. The leading extended mean  field terms of order  8 3 and 8 4 are also 
included in femf. The expansion (8) is expected to be valid as long as z is 
large and [8t < z  -1. 



3. T H E R M O D Y N A M I C S  OF A SINGLE DENSE W A L K  

This section studies the the rmodynamic  properties of a single polymer 

chain as a funct ion of the packing fraction q~, the contact  energy e, and the 

dimensional i ty  d. The free energy per segment given by (8) becomes simpler 

in the two interest ing l imiting cases of q~=0  (dilute chain)  and q~= 1 
(Hami l ton ian  walk). Expanding  f abou t  ~ = 0  and  retaining only the 

linear con t r ibu t ion  in ~ produces 

f(q5 ~ 0) =fdi l  + qSf,~il + "'" (9a) 

fdil = Udil--Sdil =eZ 1 _ (ln z - - z  - l  -- 3z 2/2 + - .-)  (9b) 

f /~ i l=[ �89  1_ z 1_3z  2 ] + . . .  (9c) 

where fdil  = f ( ~ b  = 0), fdi l  = df/d~]~=o, and  the quanti t ies Udil and Sdi I are, 
respectively, the energy and  the entropy per segment of the dilute chain. 

0.0 

-0 .5  
J 

- 1 . 0  ~ 

-1 .5  
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-2 .0  
0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 4. Packing fraction dependence of the free energy per segment f for an interacting SAW 
on square (z = 4 upper curves) and sc (z = 6 lower curves) lattices. The athermal chain (e = 0) 
results are indicated by a solid line. Self-attracting (self-repelling) SAWs with e=-0.15 
(e = 0.15) produce the dotted (dashed) lines. The best available athermal chain values of f at 

= 0 and ~ = 1 from refs. 4 and 8, respectively, are indicated by black dots. 
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Fig. 5. Free energy per monomer versus dimensionality for athermal chains on 
d-dimensional hypercubic lattices. The packing fractions are 4 = 0 (solid line), 4 = 0.5 (dotted 
line), 4 = 0 . 9  (dot-dashed line), and 4 =  1 (dashed line). Black dots at 4 = 0  and 4 =  1 are 
from refs. 4 and 8, respectively. 
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Fig. 6. Same as Fig. 5, but for self-attracting chains with 8 = -0 .15 .  

822/67,"1-2-26 
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Similarly, after expanding f of (8) about  q~ = 1 and keeping the linear 
term in 1 -  ~b, we find 

f(q~ ~ 1) =fhw + (1 -- qS) f~w + "'" (lOa) 

fhw=Uhw--Shw=(Z--2)e/2--[ln(z/e)+z 2/6+ .--]  (lOb) 

f~w = -ez/2+ln(1-q~)+z ~ + 7 z  2/3- t - . . -  (10c) 

where the Hamil tonian  walk entropy can be alternatively written 
as Shw=ln #hw, with #hw the athermal Hamil tonian walk connectivity 
constant  evaluated to O(z 2) in ref. 17. This is because, as discussed below, 
the exact fhw is linear in e, and therefore Shw is e-independent. 

The rmodynamic  properties may now be obtained from the chain free 
energy per segment. For  example, the mean number  of contacts per 
m o n o m e r  ( m )  is given by 

(m) =d(ln f)/de (11) 

Inserting (lOb) in (11) yields 

( m ) h  w = (Z -- 2)/2 (12) 

3 . . . .  I . . . .  I . . . .  I . . . .  i ' " ?  
/ /  

/ 
/ / 

/ 
/ / 

/,, 
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E - / / // 

/ 
// //i - 

m / J - / / 

/" ,, x 
V x i - 

//" x i 

1 - / . /  --~ 
/ /  / / /  

0 . . . .  I . . . .  I . . . .  I , , , , t  . . . .  

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  
@ 

Fig. 7. Mean number of contacts per segment (m) as a function of ~b for an athermal dense 
walk on square (solid line), sc (dashed line), and 4-d hypercubic (dotted line) lattices. (m) 
is practically independent of ~ for I~1 <z -1. The ~=0,  d=2 and d=3 results from refs. 14 
and 11, respectively, are indicated by superimposed black dots. 
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as contributions on (m)hw only arise from femr and f(l~. The second-order 
f(2) produces a vanishing contribution. We also expect that higher order 
contributions from f(~), i >  2, vanish since (12) is an exact result. In fact, it 
is easy to see that the maximum number of contacts per segment of a SAW 
on a d-dimensional hypercubic lattice is d - 1 .  This is also in accordance 
with previous (3'H'~4) discussions of the most  compact packing of a self- 
avoiding chain. When the chains have ~ ~ 0, use of (9) and (l 1) produces 
the interesting result 

( m ) ( ~ O ) = z  1 + @ ( z / 2 - - 2 +  . . . )+O(z -2 ,  ez - l )  ( 1 3 )  

predicting that ( m )  oc d 1 when qs=0 ,  but ( m )  oc d when ~ is finite 
(dense walkls). In fact, for infinite chains ( M ~  oo), there is a jump discon- 
tinuity in ( m )  versus ~ at ~ = 0 in the limit of  z-- ,  oo if ~ approaches zero 
slower that z -  1. 

The internal energy u and entropy s per segment of the polymer chain 
are respectively obtained from 

u =  ( m ) e  (14a) 

s = - f +  u (14b) 

4 

. . . .  I . . . .  I . . . .  ! . . . .  
,//_" 

f 

.i / ~ 
/ 1 I "  

- -  j / /  . I  I "  - -  

f 1 "  / 
f I "  

7 
J p f  

j f  / - ~  

- -  I "  I "  I "  
j J  / 

/ - / "  
/ / "  

7 s 

0 q _ _  

r , i , ] , i i i I I i I , [ I I , , 

2 3 4 5 6 
d 

Fig. 8. The function ( m )  versus d for various packing fractions: ~b = 0 (solid line), ~ = 0.5 
(dotted line), ~b=0.9 (dot-dashed line), and q~= 1 (dashed line). Black dots at q~=0  are 
( m ) s q = 0 . 1 6  and ( m ) ~ r  from refs. 14 and 11, respectively. 
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and their values for infinitely dilute and densest walks are given by (9b) 
and (10b), respectively. 

Figure 4 shows that the free energy per segment of a self-interacting 
infinite SAW is a monotonically increasing function of the packing fraction 
~b, 0~<45~< 1, for both, square ( z = 4 )  and sc ( z = 6 )  lattices. Also, f 
increases linearly with e for lel < z  -1 for a given ~b and d. As discussed 
below, this occurs because the entropy per monomer is practically inde- 
pendent of e, while the internal energy grows linearly with ~. The black dots 
for ~b = 0 and q5 = 1 in Fig. 4 indicate the best literature values (4,s) for f in 
these limits. 

The d dependence of f for athermal ( e = 0 )  and self-attracting 
(e = -0.15)  chains is displayed in Figs. 5 and 6, respectively, for various ~. 
Results for self-repulsive chains are similar to those for e = 0 but with larger 
separation between curves that differ in q~. When e/> 0, fhw at a fixed d 
provides an upper bound to the free energy per segment because 
Hamiltonian walks have the least specific entropy and the maximum 
number of contacts per segment. Hence, they have the largest internal 
energy. On the contrary, the internal energy of self-attractive walks is 
negative, so fh,~, which is an upper bound to f at low d, becomes a lower 

0.6  

A 
0 .4  

0 .2  

. . . .  I . . . .  I . . . .  I . . . .  

m 

, , , = L , , , , i , , , , i , , = ,  
- 0 . 2  - 0 . 1  0 .0  0 .1  0 .2  

E 

Fig. 9. The quanti ty ( m )  versus e at various packing fractions: 4 = 0  (solid line), 4 = 0 . 1  
(dotted line), q> = 0.25 (dot-dashed line), and ~ = 0.4 (dashed line). The slope of the ( m )  vs. 

curves decreases as q) approaches unity. ( m )  at q~ = 1 is e-independent. 
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bound  for large values of d. Therefore, as d grows, the curves for f versus 
d for different 45 become further apar t  for e/> 0 (Fig. 5) but approach  (and 
ultimately cross) each other  when e < 0 (Fig. 6). 

Figure 7 displays ( m ) ,  the mean number  of contacts  per segment, as 
a function of 45 for square, sc, and d =  4 hypercubic lattices. As expected, 
( r n )  grows as the packing is more  compact.  Al though the calculated ( r n )  
for an square lattice appears to have a min imum at 45 ~ 0 (which is absent 
for d >  2), we do not  believe that  this feature would persist in higher order  
calculations. In fact, our  results improve as d, 45, and e grow. This is 
expected, since as fluctuations become less relevant at higher d and 45, 
fewer corrections to mean field are required. Also, the predicted value 
< m ) a i ~ = z  l+O(z 2, /~Z--1) is substantially larger than those of refs. 11 
and 14, which predict 0 .16<  { m ) < 0 . 1 8  for a square lattice. Since we 
expect ( r n )  to grow with 45, the value of our  "minimum" could be taken 
as an upper  bound  to ( m ) .  

Figure 8 exhibits { m )  as a function of  d for various 45. Dense (dilute) 
walks have the mean number  of contacts per monomers  grow (decrease) 
with dimensionality. [See Eq. (13).] For  dense walks, this clearly arises 

2.0 

1.5 

1.0 

0.5 

0.0 
0.0 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  

, , , , , , , , , , I t  . . . .  I . . . .  I . . . .  

0.2 0.4 0.6 0.8 1.0 
@ 

Fig. 10. The volume fraction dependence of the entropy per monomer for athermal chains 
on square (lower solid line) and sc (upper solid line) lattices. The dashed curve is from 
Duplantier and Saleur (m) for square lattices. The best available results at 4 = 0  and qs= 1 
from refs. 4 and 8 are indicated by black dots. 
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because  the higher  the d imens ion  (at fixed qs), the larger  is the number  of 
neares t  ne ighbor  sites accessible to o ther  monomers .  A dilute walk with 
45 = 0, on the o ther  hand,  has more  space avai lable ,  and  hence there is less 
chance of re turn ing  close to a previous ly  visited site. ( m )  is a l inear ly 
decreas ing funct ion of  e for [el < z -1 ,  as i l lus t ra ted in Fig. 9 for a self- 
in terac t ing  S A W  on a sc lattice. Since ( m )  depends  weakly  on e over  the 
energy range considered,  the chain  in ternal  energy of  (14a) is then pract i -  

cally p r o p o r t i o n a l  to the contac t  energy. 
The  en t ropy  per  m o n o m e r  is presented  in Fig. 10 as a funct ion of  the 

po lymer  vo lume fract ion for a the rmal  chains on square and sc lattice. The 
en t ropy  decreases from its m a x i m u m  of S dil at q> = 0 to its m i n i m u m  value 
of Shw = ln(z/e) + O(z 2) at  ~b = 1. The Dup lan t i e r  and  Saleur  square lat t ice 
result  for 0 ~< ~ ~< 1 is d i sp layed  for compar i son .  Ref. 17 provides  o ther  
c ompu ta t i ons  for a the rmal  chains. The en t ropy  per  m o n o m e r  has a very 
weak dependence  on ~ (abou t  a 2-3 % var ia t ion  from its a the rmal  l imit)  in 
the energy range cons idered  here. F o r  dense walks it a lways possesses a 
m a x i m u m  at ~ = 0. F igure  11 shows the d dependence  of s for var ious  ~b. As 
expected,  the en t ropy  per  segment  grows with d (as ln d )  because  the 

a . . . .  I . . . .  I . . . .  I . . . .  

3 

0 . . . .  I . . . .  I . . . .  I , , , ,  
2 3 4 5 6 

d 

Fig. 11. The entropy per segment as a function of d for athermal dense walks at various 
packing fractions: ~ = 0  (solid line), ~=0.5 (dotted line), tb=0.9 (dot-dashed line), and 

= 1 (dashed line). The entropy per segment changes very little with e when le[ < z 1. Results 
of refs. 4 and 8 for dilute and the densest packing are indicated by black dots. 
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opening of space provides more configurational choices (growing as d) per 
monomer.  

Let us now consider the 45=0 limit. We stress that, as briefly 
discussed above, our expansion becomes less reliable for small values of q~ 
and d and as the energies become more attractive. In fact, as fluctuations 
grow in importance (e.g., when ~ = 0 and e ~< 0 in low d), more terms in 
the series expansion (8) are necessary and, in some instances, appropriate 
resummations may be required to produce good results. Hence, our present 
predictions for dilute walks are only semiquantitative. Figure 12 shows the 
free energy per monomer  as a function of the contact energy e for a dilute 
chain on square and sc lattices. Also presented are the d - - 2  and 3 results 
of Fisher and Hiley. ttl) More recent predictions by Ishinable U3~ of # versus 
e for a self-attracting SAW on a square lattice fall very close to those of 
ref. 11. Our  results are quite reasonable for repulsive or weakly attractive 
SAWs. (Attractive walks with e < - z  1 lie beyond the range of validity for 
our expansion). 

Although the ~ = 0 free energy per monomer  of (9b) is in reasonable 
agreement with previous determinations, derivatives of this thermodynamic 
function are more sensitive to fluctuations, and hence higher order correc- 

1 0  . . . .  I . . . .  I . . . .  I . . . .  

8 

6 \ 

tl " " ~ - ~  ~-z~---._.~ 

4 - -  

. . . . .  Z Z ~  

- 1 . 0  - 0 . 5  0 .0  0 .5  1.0 
E 

Fig. 12. The free energy per segment as a function of the contact energy s for a self-inter- 
acting dilute (cb=0)  walk on square (lower solid line) and sc (upper solid line) lattices. 
Results from Fisher and Hiley IH) are indicated by dashed lines. The black dots give the best 
value of the square and sc connectivity constant  (/~ at ~b = e = 0)J 41 
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tions are required for other thermodynamic quantities. Because the 
calculated fail is linear in e (to the order we evaluate), (m)ail  and sdil are 
independent of the contact energy. On the other hand, refs. 11 and 12 show 
that the entropy per segment varies slowly with contact energy, exhibiting 
a maximum near e--0.  Our predicted Sdi~(e)= 1.03 and 1.58 for square and 
sc lattices, respectively, are somewhat above that maximum entropy per 
monomer given in ref. 11. Also, our prediction ~ m ) d i l  = Z  -1  is about 50% 
larger than previous values for square and sc lattices. 

4. CONCLUSIONS 

This work investigates for first time dense self-interacting self-avoiding 
random walks on d-dimensional hypercubic lattices over the whole range 
0 ~< q~ ~< 1 of polymer volume fractions. The lattice cluster theory (LCT) is 
used to evaluate the dense walk free energy per segment f in Eq. (8) as a 
function of the packing fraction q~, the contact energy e, and the dimen- 
sionality d of the space. Our d -1 expansion of f is valid as long as 
le[ < z  1, with z = 2 d  the lattice coordination number. Higher order 
contributions may, in principle, be evaluated using the techniques of refs. 
17-19 and references therein. 

The important limiting cases of infinite dilution (q~ = 0) and of the 
densest packing ( 4 =  1) are treated in some detail. When qs~0,  we find 
that the mean number of contacts per segment ( m )  of infinite chains has 
a jump discontinuity in the z - t  ~ 0 limit when q~ approaches zero slower 
than z -1. Hamiltonian walks (q~= 1) yield ~ m ) h w = d - - 1 ,  in agreement 
with expectations. We also derive an expansion for f near full packing (i.e., 
about a HW with 45 ~ 1). The predicted HW entropy per monomer for a 
square lattice is very close to its best literature values. 

The interesting dependence of the free energy per segment, the entropy 
per monomer, and the mean number of contacts per monomer on volume 
fraction and dimensionality are discussed and compared with previous data 
in available limiting cases. This comparison and simple physical arguments 
indicate that our expansion is better at high packing fraction and dimen- 
sionality. This is because the LCT produces an expansion of the free energy 
or other quantities of interest about a Flory-type mean field which is exact 
at d - -oe .  Since the fluctuations are added perturbatively, the smaller the 
fluctuations, the better is the mean field approximation, and the fewer 
are the corrections required to produce good results. Similar arguments 
indicate that our calculations are less reliable in the ~b--0 limit, and, in 
particular, when attractive contact interactions are present. Nevertheless, 
we find our d =  2 and 3 results for q5 = 0 are in semiquantitative agreement 
with previous computations. Recent work c21) combining the LCT with 
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exact enumerations produces an expansion of the q)= 0 free energy per 
monomer through fifth order in d-1, retaining the full e dependence. Ref. 21 
investigates in depth this interesting ~ = 0 regime. 

Results of this paper strictly apply to hypercubic lattices. Other lattice 
types can also be studied similarly. Although the mean field approximation 
depends only on the coordination number z, corrections distinguish lattice 
types, such as hexagonal and sc, with the same z. This is in accordance 
with the conclusions of Bradley. (22) If we insist on using (10b) to obtain, for 
example, the connectivity constant of a Hamiltonian path on a Manhattan 
lattice (using z = 3 ) ,  we find # h w = l . l l ,  substantially lower than the 
exact(7/#hw = 1.338... but better than the predictions of either the Flory-like 
theories (#hwVl~ = 0.74) or that of Orland et aL (9) (~/hw OID= 1.10). 

The LCT methods can be extended without difficulty to evaluate other 
polymer properties, such as mean size and critical exponents, (21) and also 
to calculate thermodynamic functions of other interesting packing 
problems, such as self-avoiding surfaces. We are presently investigating the 
influence of polymer branching and structured monomers on the thermo- 
dynamic properties of dense walks. (2~ 
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